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Abstract: - Transmitting the information in the form of images has drawn much importance in the modern age. 
The images are often corrupted by various types of noises during acquisition and transmission. Such images 
have to be cleaned before using in any applications. Image denoising is a thirst area in image processing for 
decades. Wavelet transform has been an efficient tool for image representation for decades because of its 
simplicity, energy compaction and sparse representation. Ample of wavelet based thresholding techniques are 
proposed based on universal and adaptive thresholding techniques.  Fixing an optimal threshold is a key factor 
to determine the performance of denoising algorithms. This optimal threshold shall be estimated from the 
image statistics for ensuring   better performance of noise removal in terms of clarity (or quality of the) images. 
In this paper, an experimental study of the state of the art wavelet based thresholding methods is presented. The 
denoising performance of the wavelet based shrinkage methods are compared interms of mean square error, 
peak signal to noise ratio, image enhancement factor and the most recent measure namely multiscale structural 
similarity index.  
 

Key-Words: - Image denoising, Wavelet transform, Threshold methods, Adaptive threshold, Wavelet 
subbands, Shrinkage methods. 
 
1 Introduction 
Image denoising plays a key role in the field of 
image processing. Denoising is usually employed as 
a pre-processing stage in Image processing areas 
like segmentation, analysis, feature extraction and 
object recognition. The noisy components present in 
an image reduce the clarity of the image by 
affecting the structural information and blur the 
edges. The undesired component present in the 
images defined as noise fall into two major 
categories namely additive and multiplicative noise. 
If s(x, y) is the clean image and n(x, y) denotes the 
noise, then corrupted image w(x, y) in the presence 
of additive and multiplicative noise can be 
mathematically modeled as   (1) and   (2) 
w(x, y) = s(x, y) + n(x, y)    (1) 
w(x, y) = s(x, y) × n(x, y)                (2) 

Denoising is then reduced to a simple estimation 
problem, i.e. Estimation of s(x, y) from w(x, y). 
Most of the spatial and transform domain denoising 
techniques require the prior information about the 
type of noise present in the image.  The probability 
density function (PDF) of the noise is modeled 
mathematically in different ways based on the 

statistical properties of the noise. Some of the well 
known noise models are Gaussian, impulse, poisson, 
uniform, exponential, gamma or erlang noise who’s 
PDFs, mean and variance of these PDFs [1-3].  
 Earlier, Fourier transform was used successfully 
for additive noise removal [4], yet Fourier transform 
cannot explore spatial and frequency information 
simultaneously. The discrete cosine transform 
(DCT)  posses  the characteristics of  Decorrelation, 
Energy Compaction, Separability and Orthogonality 
for denoising [5], but it fails in the presence of 
singularities or edges. Because of the lack of 
sparsity, edges cannot be represented or restored 
effectively, and significant ringing artifacts arising 
from the Gibbs phenomenon become visible [6]. 
The Wavelet transform [7, 8] is  a better choice for 
various image processing applications including 
image denoising.   
 In Wavelet based denoising, first the image is 
transformed with an orthogonal transform. Then, the 
transformed coefficients are thresholded by non 
linear shrinkage function [9]. Finally, the 
coefficients are reconstructed by the inverse 
orthogonal transform. This provides large 
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transformed coefficients of the image compared to 
the noise. Hence, the smaller coefficients are 
eliminated, and the image is reconstructed with the 
remaining coefficients to remove the noisy 
components present in the image. Several Wavelet 
based shrinkage functions are proposed in literature 
[9-14] following hard or soft threshold introduced 
by D. L. Donoho [15, 16]. The soft thresholding of 
wavelet coefficients is preferred over hard 
thresholding because of its visually appealing 
performance.  
 In this empirical study, a pragmatic investigation 
on the various wavelet based threshold methods for 
denoising the natural images. This paper is 
organized as follows. Section 2 deals with the 
methodology of Wavelet based denoising. Various 
threshold functions are discussed in section 3. 
Experimental results are presented in section 4 and 
conclusions are drawn in section 5. 
   
 
2 Methodology   

  

2.1 Wavelet Transform 
 
Wavelet transform is a wonderful mathematical tool 
for signal and image processing   due to its multi-
resolution nature and computational efficiency. 
Wavelet schemes are especially suitable for 
applications where scalability and tolerable 
degradation are the important considerations. 
Wavelet transform decomposes a signal into a set of 
basis functions. Wavelets are derived from a single 
prototype wavelet ψ (t) called mother wavelet by 
scaling and translation as in   (3) 



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τψψ τ

1)(,
                   (3) 

‘s’ is the scale factor, τ - is the translation factor 

and the factor s is for energy normalization across 
the different scales. The continuous wavelets 
represented by (3) are highly redundant. This 
problem is eliminated by discrete wavelets. Discrete 
wavelets are not continuously scalable and 
translatable but can only be scaled and translated in 
discrete steps hence piecewise continuous [17]. The 
discrete wavelet at level ‘l’ is represented in (4) can 
be extended easily to 2D case 

tktkgt
k

l
l

j ∑ −= +
+ )2()()2( 1
1 ϕψ

     (4) 

where (.)ϕ is the scaling function and (.)g  is the 
wavelet filter. 

Unlike Fourier bases, Wavelet transform provides 
excellent time and frequency representation 
simultaneously. With the sub sampling property, the 
performance of the Wavelet transform can be 
realized using iterative filter bank structures. Every 
time the filter bank is iterated, the number of 
samples for the next stage is halved so that only one 
sample is left at the end. The iteration is halted at 
the point once the number of samples becomes 
smaller than the length of the scaling filter or the 
wavelet filter and length of the longest filter 
determines the width of the spectrum of the scaling 
function [17]. 

 
Fig 1: Wavelet decomposition (LP – Low pass filter, 
HP – High pass filter, A – Approximation 
coefficients, H, V, D – Horizontal, Vertical and 
Diagonal detail coefficients respectively) 

 

The wavelet decomposition of an image is carried 
out as follows: In the first level of decomposition, 
the image is split into 4 subbands, namely the HH, 
HL, LH and LL subbands. The HH subband gives 
the diagonal details of the image; the HL and LH 
subbands give the horizontal and vertical features 
respectively.  

 

Fig 2: Subbands after two levels of wavelet 
decomposition 
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 The LL subband is the low resolution residual 
consists of low frequency components and its 
subbands are further split at higher levels of 
decomposition [9, 17, 18]. This decomposition 
process is shown in Fig 1. Subbands after two levels 
of wavelet decomposition are shown in Figure 2. 
 
Apart from efficient multiresolution representation 
and sub sampling, wavelets exhibit interesting 
characteristics such as sparsity and high energy 
compaction. These features are particularly useful in  

image denoising and compression. The histograms 
of clean image, noisy image and their respective 
subband histograms up to two levels of wavelet 
decomposition are sown in Figure 3. From Figure 
3(b) and 3(j) it is evident that, the wavelet 
coefficients that correspond to noisy pixels are 
significantly smaller than the image details. Hence, 
by simple threshold methods i.e. by shrinking the 
insignificant coefficients, effective denoising can be 
achieved 

    
                 (a)                               (i) 

     
                     (b)                             (j)   

   
                      (c)                                        (k) 

  
                       (d)                 (l)  
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                             (e)                            (m) 
 

   
                                         (f)                            (n) 
 

  
                                        (g)                                                                          (o) 
 

  
             (h)                                       (p) 

Fig 3: Histogram of clean image, noisy image and Wavelet subbands:                  
Column 1: (a) Histogram of clean Lena image, (b) – (e) Histogram of (LL1, HL1, LH1 and HH1 -level 2 
subbands) approximate, vertical, horizontal and diagonal coefficients respectively of clean image. (f)-(h) 
Histogram of (HL, LH and HH -level 1 subbands) vertical, horizontal and diagonal coefficients respectively of 
clean image. Column 2: (i) Histogram of Lena image corrupted with Gaussian noise of variance 0.01, (j) – (m) 
Histogram of (LL1, HL1, LH1 and H1 -level 2 subbands) approximate, vertical, horizontal and diagonal 
coefficients respectively of noisy image. (n)- (p) Histogram of (HL, LH and HH -level 1 subbands) vertical, 
Horizontal and diagonal coefficients respectively of noisy image. 

 
.  
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2.2 Image denoising using Wavelet Transform: 
Wavelet based denoising techniques follow the 
similar steps irrespective of the shrinkage function. 
A general framework for wavelet based denoising is 
shown in Figure 4. The algorithm of wavelet based 
image denoising is as follows. 
 

  

Fig 4. Wavelet Denoising Framework 
 
Step 1: Read the noisy image as input 
Step 2: Perform 2D Discrete Wavelet Transform 
 and obtain Wavelet Coefficients (Subbands) 
Step 3: Estimate noise variance from the noisy  
 image. 
Step 4: Calculate the threshold using suitable non-
 linear shrinkage function. 
Step 5: Apply soft thresholding. 
Step 6: Perform inverse 2D Discrete Wavelet  
 Transform on the thresholded wavelet 
 coefficients. 
Step 7: Obtain the denoised image 
Step 8: Evaluate the quality of the denoised image. 
 
The performance of the denoising algorithm relies 
on the optimal value of threshold. Fixing an optimal 
threshold is not an easy task. The non linear 
threshold functions can be seen as two major 
categories namely fixed threshold and adaptive 
threshold. Fixed threshold methods apply same 
threshold value with hard/soft threshold on the 
complete set of wavelet coefficients. As shown in 
Figure 3, the ranges of magnitudes of all wavelet 
subbands are not similar. Hence, fixed threshold 
methods are likely to oversmooth image details, 
failing to preserve image details. On the other hand 
subband and scale adaptive threshold methods have 
been proposed to handle this. These methods use 
different threshold value for each subband at each 
scale so as to preserve image details.  
 

3 Threshold Methods for Wavelet 
based Denoising   

Selecting an optimal threshold is a crucial phase in 
denoising process. If the threshold is too large, noisy 
components may not be eliminated. On the other 
hand if the threshold is too small, it may remove the 
image details also resulting in overly smoothed 
images. The inefficient threshold may affect the 
edge details; this may degrade the visual quality. 
[9]. Hence, the threshold must to be selected 
carefully.           

3.1 Universal Threshold 
The universal threshold can be defined as in (5),  

 NTu log2σ=    (5) 
N being the image size, σ being the noise variance is 
well known in wavelet literature as the Universal 
threshold. The universal threshold can  give a better 
estimate of the image with the soft threshold [9, 15, 
16]. However, the estimated threshold value 
depends on the image size. With a particular ‘σ’, 
universal threshold yields larger threshold for big 
images and comparatively small threshold for 
smaller images, also it requires the prior knowledge 
about the noise distribution. 

3.2 Visu Shrink 
 It follows the hard threshold rule. An estimate of 
the noise variance ‘σ’ is defined based on the 
median absolute deviation which is a robust 
estimator in   (6) and the threshold is calculated as 
in (7).   

1,
675.0

)(
ˆ

2

2 HHX ij
Xmedian ij ∈












=σ

             (6) 
NTv log2σ̂=     (7) 

 Visu Shrink does not deal with minimizing the 
mean squared error. Another disadvantage is that it 
cannot remove speckle noise. Yet, with additive 
gaussian noise assumption Visu Shrink exhibits 
better denoising performance than the universal 
threshold [9, 16].  
 

 3.3 Sure Shrink  
A threshold chooser based on Stein’s Unbiased Risk 
Estimator (SURE) was proposed by Donoho and 
Johnston and is called as Sure Shrink. It is a 
combination of the universal threshold and the 
SURE threshold. It has the distinct advantage of 
offering an analytic unbiased estimator. The goal of 
Sure Shrink is to minimize the mean squared error 
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of the estimate. Sure Shrink suppresses noise by 
thresholding the empirical wavelet coefficients [9].  
Sureshrink is smoothness adaptive, which means 
that if the unknown function contains abrupt 
changes or boundaries in the image, the 
reconstructed image also has the same [14, 15, 20-
21].  The risk for a particular threshold value‘t’ can 
be estimated. The optimal threshold can be selected 
by minimizing the risks in‘t’. If {Xi: i =1,....,d} are 
the transformed coefficients in the ‘j’th subband, the 

loss can be estimated as XX −ˆ 2

. For the soft 

threshold estimator,
)(X̂ X iti η= , 

  
 

2

1
)min(}:{#2);( ∑

=

+≤−=
d

i
ii XtXidXtSURE

 (8) 
Then the threshold Ts is given by 

);(minarg XtSURETs = . The SURE principle 
can be used to select a threshold that is applied to 
the image data, resulting in an estimate of the mean 
vector. This estimate is sparse and much less noisy 
than the raw image data [16]. The SURE principle 
just described has a serious draw-back in situations 
of extreme sparsity of the wavelet coefficients. In 
such cases the noise contributed to the SURE profile 
by many coordinates at which the signal is zero, 
swamps the information contributed to the SURE 
profile by the few coordinates where the signal is 
nonzero. Consequently, Sure Shrink uses a Hybrid 
scheme [22]. 

3.4 Bayes Shrink 
Unlike universal threshold, Visu Shrink and 
Sureshrink, Bayes Shrink sets different thresholds 
for every subband. Also the noise distribution is 
assumed to be gaussian, and the relationship 
between the wavelet coefficients of the degraded 
image, uncorrupted image and generalised Gaussian 
noise with distribution N (0,σ2) (Y, X and V 
respectively), can be modeled as Y = X+V. Since all 
the above three factors are mutually independent, 
their variances satisfy the condition,   

               
222
vxy σσσ +=   (9) 

Since, the diagonal coefficients of first level wavelet 
decomposition (HH1) contains significant amount 
of information about the noise components, the 
noise variance ‘σv’ is calculated using the robust 
estimator in equation (6). 
Variance of the corrupted image is estimated as  

     
∑
=

=
J

j
jy W

J 1

22 1σ̂
          (10) 

Where Wj are the wavelet coefficients in each scale 
‘j’ and ‘J’ is the total number of wavelet 
coefficients. The threshold value using Bayesshrink 
is given by (11, 12) 
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)0,ˆˆmax(ˆ 22 σσσ vyx <=                 (12) 
The estimation in equation (11) holds good for 
images corrupted by Gaussian noise. Nevertheless, 
it is less sensitive to the noise around edges [24, 25], 
but completely denoises the flat regions of the 
image. Modified bayes shrink overcomes this issue. 
The threshold is given by (13). 
 

x

y
mbT

σ
σ

β
ˆ
ˆ 2

=
,   j

J
2

log
=β

  (13) 
‘J’ is the total of coefficients of wavelet. ‘j’ is the 
wavelet decomposition level present in the subband 
coefficients under consideration. The modified 
bayes shrink yields the best results for denoising and 
preserves edges better than bayes shrink [23]. 

3.5 Normalshrink 
Normal shrink an adaptive threshold estimation 
method based on the generalized Gaussian 
distribution (GGD) modeling of subband 
coefficients. The threshold is computed by 
 

y

v
nT

σ
σ

β
ˆ
ˆ 2

=
    (14) 

where σv and σy are the standard deviation of the 
noise and the subband data of noisy image 
respectively. β is the scale parameter, computed as  









=

M
L jlogβ

   (15) 
Lj is the length of the subband at jth  level, M is the 
total number of decompositions, σv2 is the 
estimated noise variance of HH1 subband and σy is 
the standard deviation of the image subband. This 
method is computationally more efficient and 
adaptive because the parameters required for 
estimating the threshold depend on subband data. 
Performance of normal shrink is similar to bayes 
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shrink. But normal shrink preserves as well as 
removes noise better than bayes shrink [24,25]. 
 

3.6 Minimax Threshold 
The minimax principle was initially used in 
statistics to design estimators. Since the denoised 
signal can be assimilate  to the estimator of the 
unknown regression function, the minimax 
estimator is the option that realizes the minimum, 
over a given set of functions, of the maximum mean 
square error[26].The Minimax threshold denoising 
algorithm was proposed in [15,27]. The optimal 
threshold is derived from minimising the constant 
term in an upper bound of the risk involved in the 
estimation. Two oracles namely diagonal linear 
projection (DLP) and the diagonal linear shrinker 
(DLS) are used as in equation (16,17). DLP tells 
when to “keep” or “kill” each wavelet coefficient, 
whereas DLS states how much shrinking is applied 
to each wavelet coefficient.   
 
 

)1,min(:)( 2dkRiskDLP =   (16) 

d
dkRiskDLS 2

2

1
:)(

+
=

   (17) 
Minimax threshold does not give good visual 
quality, but it has the advantage of giving predictive 
performance [27, 28]. 
 
 
4 Experimental Results and Discussion 

4.1 Experimental setup 
The experiments were carried out using MATLAB 
7.5.0(R2007b). In search of the best threshold 
method, all the threshold methods discussed in 

section 3 are implemented and their performance 
was tested interms of mean square error (MSE), 
peak signal to noise ratio (PSNR), image 
enhancement factor (IEF) and multiscale structural 
similarity index (MSSIM). These tests are 
conducted on standard gray scale images corrupted 
by additive white gaussian noise at various noise 
densities.  

4.2 Results and Discussion  

Extensive experiments were carried out on a wide 
range of standard benchmark gray scale images. 
Table 1 – Table 4 shows the comparison of MSE, 
PSNR, IEF and MSSIM respectively for the 
benchmark Lena image at various noise densities. 
From the experimental results, it is evident that 
Bayes shrink and wavelet based minimax threshold 
produces better results than Universal threshold, 
Visu Shrink and Normal shrink. Sure shrink exhibits 
moderate denoising performance as evident from the 
results shown in Figure 5. The performance of the 
wavelet based shrinkage methods was tested on 
various Wavelet bases  namely db1, db2, coif1, 
coif5, sym2, sym8, bior1.1, bior2.2, rbio1.1, rbio2.2 
using the MATLAB Wavelet Tool Box function 
‘wfilters’ and tabulated in Table 5. Almost all the 
wavelet filters perform in a much similar fashion. 
The denoised images resulting from various 
threshold methods compared are shown in Figure 6 
and Figure 7. For smooth images like ‘Peppers’, 
Visu Shrink, Sure shrink, Bayes shrink and wavelet 
based minimax threshold are visually appealing. On 
the other hand, for images with more details 
(Barbara), Visu Shrink, Bayes shrink and minimax 
threshold are not able to preserve edges as in Figure 
7. Sureshrink exhibits visually good results for 
images with more details.  
 

 

Table 1: Comparison of MSE for Lena image at various noise levels 

 
MSE 

Noise 
Variance Universal Vishushrink Sureshrink Bayes Shrink Normal Shrink Minmax 

Threshold 
0.001 65.04797 65.04797 123.4624 34.68359 65.09261 33.87048 
0.005 324.849 324.849 206.8091 103.4518 325.4177 109.4437 

0.01 637.1436 637.1436 250.6609 160.6539 638.7855 168.7058 
0.02 1238.726 1238.726 308.0724 234.8927 1243.426 255.0384 
0.03 1806.012 1806.012 348.7247 290.374 1814.635 312.6099 
0.04 2320.817 2320.817 388.3303 342.807 2333.93 368.3421 
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0.05 2806.119 2806.119 417.9903 380.3319 2824.243 398.8822 
0.06 3243.557 3243.557 460.5843 431.1035 3266.997 451.9094 
0.07 3660.249 3660.249 486.4702 465.2139 3689.398 482.0533 
0.08 4049.882 4049.882 516.9015 500.9522 4084.87 514.2099 
0.09 4401.148 4401.148 555.5604 538.2613 4442.18 553.3394 

0.1 4686.806 4686.806 577.8989 565.877 4733.887 571.0069 
0.2 7122.454 7122.454 872.958 872.958 7238.49 872.958 
0.3 8583.293 8583.293 1040.687 1040.687 8775.602 1040.687 
0.4 9551.858 9551.858 1220.568 1220.568 9821.158 1220.568 
0.5 10248.02 10248.02 1348.112 1348.112 10595.76 1348.112 
0.6 10733.49 10733.49 1473.708 1473.708 11158.07 1473.708 
0.7 11171.09 11171.09 1579.88 1579.88 11675.76 1579.88 
0.8 11466.83 11466.83 1606.041 1606.041 12051.66 1606.041 
0.9 11769.62 11769.62 1724.504 1724.504 12433.14 1724.504 

1 11874.94 11874.94 1703.465 1703.465 12619.38 1703.465 
 

Table 2: Comparison of PSNR for Lena image at various noise levels 

 
PSNR 

Noise 
Variance Universal Vishushrink Sureshrink Bayes Shrink Normal Shrink Minmax 

Threshold 
0.001 30.006 29.20094 27.20758 32.7071 30.00303 32.78202 
0.005 23.01399 25.82599 24.97511 27.98342 23.00639 27.7389 
0.01 20.08843 24.60077 24.13994 26.07189 20.07725 25.8595 
0.02 17.20105 23.45165 23.24428 24.42211 17.1846 24.06475 
0.03 15.5636 22.80459 22.70598 23.50123 15.54291 23.18078 
0.04 14.4744 22.30067 22.23879 22.78031 14.44993 22.46829 
0.05 13.64974 21.93222 21.91914 22.32918 13.62178 22.12236 
0.06 13.02059 21.5189 21.49771 21.78499 12.98932 21.58029 
0.07 12.4957 21.26024 21.26024 21.45428 12.46125 21.29985 
0.08 12.05638 21.00174 20.99673 21.13284 12.01902 21.0194 
0.09 11.69514 20.6887 20.68349 20.82087 11.65484 20.70089 
0.1 11.42203 20.51384 20.51228 20.60358 11.37863 20.56439 
0.2 9.604507 18.72087 18.72087 18.72087 9.534324 18.72087 
0.3 8.794264 17.9576 17.9576 17.9576 8.698035 17.9576 
0.4 8.329925 17.26518 17.26518 17.26518 8.209177 17.26518 
0.5 8.024405 16.83354 16.83354 16.83354 7.879482 16.83354 
0.6 7.823396 16.44669 16.44669 16.44669 7.654912 16.44669 
0.7 7.649847 16.14456 16.14456 16.14456 7.457951 16.14456 
0.8 7.536368 16.07324 16.07324 16.07324 7.320335 16.07324 
0.9 7.423179 15.76416 15.76416 15.76416 7.184994 15.76416 
1 7.38449 15.81747 15.81747 15.81747 7.120424 15.81747 
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Table 3: Comparison of IEF for Lena image at various noise levels 

 

 IEF 
Noise 

Variance Universal Vishushrink Sureshrink Bayes Shrink Normal Shrink Minmax 
Threshold 

0.001 0.456764 0.456764 0.2398 0.850749 0.456452 0.865553 
0.005 0.222126 0.222126 0.348908 0.697498 0.221738 0.659311 
0.01 0.135353 0.135353 0.344048 0.536802 0.135005 0.511182 
0.02 0.080077 0.080077 0.321979 0.422291 0.079774 0.388933 
0.03 0.057258 0.057258 0.296532 0.356121 0.056986 0.33079 
0.04 0.045887 0.045887 0.274239 0.310656 0.045629 0.28912 
0.05 0.038429 0.038429 0.257989 0.283534 0.038183 0.270348 
0.06 0.033821 0.033821 0.238178 0.254466 0.033579 0.24275 
0.07 0.030486 0.030486 0.229383 0.239863 0.030246 0.231484 
0.08 0.028084 0.028084 0.220035 0.22704 0.027843 0.221187 
0.09 0.025896 0.025896 0.205146 0.211739 0.025656 0.205969 
0.1 0.024091 0.024091 0.195378 0.199529 0.023851 0.197737 
0.2 0.01654 0.01654 0.134948 0.134948 0.016275 0.134948 
0.3 0.014012 0.014012 0.115571 0.115571 0.013705 0.115571 
0.4 0.012667 0.012667 0.099126 0.099126 0.012319 0.099126 
0.5 0.011899 0.011899 0.090457 0.090457 0.011509 0.090457 
0.6 0.011421 0.011421 0.083182 0.083182 0.010986 0.083182 
0.7 0.010992 0.010992 0.077726 0.077726 0.010517 0.077726 
0.8 0.010609 0.010609 0.075746 0.075746 0.010094 0.075746 
0.9 0.010509 0.010509 0.071724 0.071724 0.009948 0.071724 
1 0.010392 0.010392 0.072444 0.072444 0.009779 0.072444 

 

Table 4: Comparison of MSSIM for Lena image at various noise levels 

 
MSSIM 

Noise 
Variance Universal Vishushrink Sureshrink Bayes Shrink Normal Shrink Minmax 

Threshold 
0.001 0.969465 0.969465 0.961489 0.980391 0.969451 0.98231 
0.005 0.901003 0.901003 0.922124 0.941498 0.900924 0.944488 
0.01 0.849203 0.849203 0.891466 0.909213 0.849064 0.91029 
0.02 0.783583 0.783583 0.847653 0.863001 0.783351 0.859649 
0.03 0.741924 0.741924 0.818245 0.830021 0.741612 0.826176 
0.04 0.708474 0.708474 0.792984 0.80374 0.708092 0.797163 
0.05 0.68496 0.68496 0.77639 0.785539 0.684505 0.780942 
0.06 0.658536 0.658536 0.754734 0.761634 0.658027 0.757305 
0.07 0.641516 0.641516 0.74417 0.749587 0.640928 0.745526 
0.08 0.620337 0.620337 0.722502 0.726334 0.619721 0.723376 
0.09 0.604886 0.604886 0.708318 0.712633 0.604217 0.708979 
0.1 0.59393 0.59393 0.699466 0.702528 0.593214 0.701294 
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0.2 0.490857 0.490857 0.602508 0.602508 0.489728 0.602508 
0.3 0.436399 0.436399 0.552589 0.552589 0.434903 0.552589 
0.4 0.384161 0.384161 0.494463 0.494463 0.382402 0.494463 
0.5 0.363174 0.363174 0.470306 0.470306 0.361147 0.470306 
0.6 0.337012 0.337012 0.439264 0.439264 0.334746 0.439264 
0.7 0.337012 0.337012 0.439264 0.439264 0.334746 0.439264 
0.8 0.303117 0.303117 0.396626 0.396626 0.300529 0.396626 
0.9 0.28282 0.28282 0.378427 0.378427 0.280007 0.378427 
1 0.282146 0.282146 0.378552 0.378552 0.279066 0.378552 

 

   

(a)                 (b) 

    

(c)                   (d) 

Figure 5: a) to d) – Comparison of MSE, PSNR, IEF and MSSIM for Lena image at various noise 
levels 
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Table 5: Comparison of MSE, PSNR, IEF and MSSIM for Barbara and Cameraman images 
(with additive white gaussian noise of density 0.01) with various wavelet filters namely 
db1,db2,coif1,coif5,sym2, sym8, bior1.1, bior2.2, rbio1.1, rbio2.2.( I- Universal Threshold, II –
Vishushrink, III – Sureshrink, IV - Bayes Shrink, V - Normal Shrink, VI - Minimax 
Threshold)
 

 

 
 

PM WF 
Barbara Peppers 

I II III IV V VI I II III IV V VI 

M
SE

 

d b 1 626.00 626.00 364.35 222.71 627.64 215.51 611.42 611.42 183.59 124.59 613.15 122.20 
d b 2 629.07 629.07 317.97 190.39 630.76 175.08 611.22 611.22 137.47 106.19 612.99 100.68 
coif1 630.67 630.67 316.92 189.00 632.37 173.10 606.57 606.57 130.90 103.77 608.33 98.35 
coif5 626.40 626.40 297.84 162.06 628.12 139.71 611.12 611.12 116.79 95.51 612.89 91.31 
sym2 628.66 628.66 318.38 190.89 630.35 176.73 610.76 610.76 137.14 105.49 612.53 99.66 
sym8 625.41 625.41 297.70 163.79 627.13 142.35 610.96 610.96 118.26 98.24 612.73 91.71 
bior1.1 629.87 629.87 363.34 223.09 631.52 215.08 611.32 611.32 184.90 125.64 613.06 124.28 
bior2.2 626.94 626.94 303.94 281.78 628.68 179.24 609.85 609.85 125.32 228.72 611.64 117.07 
rbio1.1 630.84 630.84 362.98 221.18 632.49 214.97 610.21 610.21 185.18 128.37 611.95 124.77 
rbio2.2 626.46 626.46 358.14 364.52 627.99 217.97 611.08 611.08 170.28 187.99 612.70 133.49 

PS
N

R
 

d b 1 20.165 22.693 22.516 24.653 20.154 24.796 20.267 26.138 25.492 27.176 20.255 27.260 
d b 2 20.144 23.294 23.107 25.334 20.132 25.698 20.269 27.088 26.749 27.870 20.256 28.101 
coif1 20.133 23.333 23.121 25.366 20.121 25.748 20.302 27.258 26.961 27.970 20.289 28.203 
coif5 20.162 23.758 23.391 26.034 20.150 26.678 20.270 27.693 27.457 28.330 20.257 28.525 
sym2 20.147 23.280 23.101 25.323 20.135 25.658 20.272 27.093 26.759 27.900 20.260 28.145 
sym8 20.169 23.736 23.393 25.988 20.157 26.597 20.271 27.666 27.402 28.208 20.258 28.506 
bior1.1 20.138 22.709 22.528 24.646 20.127 24.805 20.268 26.082 25.461 27.139 20.256 27.187 
bior2.2 20.159 23.823 23.303 23.632 20.146 25.596 20.279 27.191 27.151 24.538 20.266 27.446 
rbio1.1 20.132 22.726 22.532 24.683 20.120 24.807 20.276 26.081 25.455 27.046 20.264 27.170 
rbio2.2 20.162 22.513 22.590 22.514 20.151 24.747 20.270 25.667 25.819 25.389 20.258 26.876 

IE
F 

d b 1 0 . 1 3 8 0 . 1 3 8 0 . 2 3 8 0.389 0.138 0.402 0.142 0.142 0.474 0.698 0.142 0.712 
d b 2 0 . 1 3 7 0 . 1 3 7 0 . 2 7 1 0.452 0.137 0.490 0.142 0.142 0.632 0.818 0.142 0.863 
coif1 0 . 1 3 8 0 . 1 3 8 0 . 2 7 5 0.461 0.138 0.503 0.142 0.142 0.657 0.829 0.141 0.875 
coif5 0 . 1 3 8 0 . 1 3 8 0 . 2 9 0 0.533 0.137 0.618 0.142 0.142 0.744 0.909 0.142 0.951 
sym2 0 . 1 3 7 0 . 1 3 7 0 . 2 7 1 0.451 0.137 0.487 0.142 0.142 0.633 0.823 0.142 0.871 
sym8 0 . 1 3 8 0 . 1 3 8 0 . 2 9 0 0.528 0.138 0.607 0.142 0.142 0.735 0.885 0.142 0.948 
bior1.1 0 . 1 3 8 0 . 1 3 8 0 . 2 3 9 0.389 0.137 0.403 0.141 0.141 0.466 0.686 0.141 0.693 
bior2.2 0 . 1 3 7 0 . 1 3 7 0 . 2 8 3 0.305 0.137 0.480 0.142 0.142 0.691 0.379 0.142 0.739 
rbio1.1 0 . 1 3 7 0 . 1 3 7 0 . 2 3 9 0.392 0.137 0.403 0.141 0.141 0.466 0.672 0.141 0.691 
rbio2.2 0 . 1 3 8 0 . 1 3 8 0 . 2 4 2 0.237 0.138 0.397 0.141 0.141 0.507 0.459 0.141 0.647 

M
SS

IM
 

d b 1 0 . 8 4 0 0 . 8 4 0 0 . 8 5 3 0.889 0.840 0.889 0.786 0.786 0.875 0.873 0.786 0.881 
d b 2 0 . 8 3 9 0 . 8 3 9 0 . 8 7 3 0.905 0.839 0.910 0.787 0.787 0.901 0.903 0.787 0.907 
coif1 0 . 8 4 0 0 . 8 4 0 0 . 8 7 1 0.903 0.840 0.908 0.787 0.787 0.900 0.898 0.787 0.905 
coif5 0 . 8 3 9 0 . 8 3 9 0 . 8 7 5 0.907 0.839 0.916 0.786 0.786 0.899 0.898 0.786 0.902 
sym2 0 . 8 4 0 0 . 8 4 0 0 . 8 7 2 0.906 0.840 0.909 0.787 0.787 0.902 0.903 0.786 0.907 
sym8 0 . 8 4 1 0 . 8 4 1 0 . 8 7 7 0.909 0.841 0.917 0.786 0.786 0.900 0.897 0.786 0.904 
bior1.1 0 . 8 3 9 0 . 8 3 9 0 . 8 5 2 0.888 0.839 0.888 0.787 0.787 0.875 0.874 0.787 0.882 
bior2.2 0 . 8 4 0 0 . 8 4 0 0 . 8 6 9 0.872 0.840 0.900 0.788 0.788 0.893 0.840 0.788 0.881 
rbio1.1 0 . 8 3 9 0 . 8 3 9 0 . 8 5 3 0.888 0.839 0.889 0.787 0.787 0.875 0.875 0.787 0.882 
rbio2.2 0 . 8 4 0 0 . 8 4 0 0 . 8 6 2 0.861 0.840 0.898 0.787 0.787 0.891 0.890 0.787 0.896 
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Fig 6: Denoised images (Peppers, AWGAN 
with variance 0.01, wname -db1) 

 

Fig 7: Denoised images (Barbara, AWGAN 
with variance 0.01, wname -db1) 
 
 
5 Conclusion 

An empirical study of wavelet based thresholding 
methods for image denoising is presented in this 
paper. It is identified that, Wavelet transform  is an 

efficient tool for image denoising and the optimum 
threshold value determines the goodness of the 
denoising algorithm. The experimental result shows 
that Sure shrink performs well in terms of 
improving visual quality for both smooth and 
detailed images among the shrinkage methods.  
Bayes shrink performs considerably better in 
improving visual quality.   

However, the images denoised by wavelet based 
denoising are prone to checkerboard artifacts due to 
the limited directional selectivity of wavelets. This 
effect is resolved with the use of highly directional 
representations to improve denoising performance. 
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